Return to previous page

Elliptic equation is a class of partial differential equations describing phenomena that do not change from moment to moment, as when a flow of heat or fluid takes place within a medium with no accumulations. The Laplace equation, uxx + uyy = 0, is the simplest such equation describing this condition in two dimensions. In addition to satisfying a differential equation within the region, the elliptic equation is also determined by its values (boundary values) along the boundary of the region, which represent the effect from outside the region. Semilinear elliptic equations play an important role in many areas of mathematics and its applications to other sciences. Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications.

Semilinear Elliptic Equations for Beginners is a comprehensive guide to variational methods and their applications to semilinear elliptic problems. This book deals with nonlinear boundary value problems for semilinear elliptic equations on unbounded domains. This book will be of valuable for professors, practitioners, and researchers in mathematics and mathematical physics.